Colloquium: Lina Kim
 
    
                The Transition to Turbulence via the Edge of Chaos in Shear Flows
Dr. Lina Kim
Postdoctoral Researcher and Lecturer
University of California Santa Barbara
The transition to turbulence in linearly stable shear flows is one of the most intriguing and outstanding problems in classical physics. Turbulent dynamics are readily observed at flow speeds where the laminar state remains stable under infinitesimal perturbations. Moreover, for a smaller class of shear flows, such as plane Couette and pipe flows, linear stability theory predicts that the laminar state remains stable for all Reynolds numbers. However, numerical simulations and experiments provide evidence that these flows exhibit turbulence, which can decay spontaneously, for sufficiently high Reynolds numbers and perturbations.
These observations are in agreement with a chaotic saddle coexisting with the laminar state in the system's state space. Analyzing the 'edge of chaos' between laminar and turbulent dynamics for these systems have generated additional insight into the transition mechanism. This boundary contains 'edge states' which are too weak to become turbulent and too strong to laminarize can be either dynamically simple or complex structures. To identify the edge states, we employ an iterated edge tracking algorithm which is implemented for several refinements until we find a trajectory which neither becomes turbulent or laminarizes. We show that for edge states with a stable manifold of codimension-1, the edge tracking algorithm will converge to it. We study the edge states for various channel sizes and compare their dynamics to those of edge states for other shear flows.
Lina  Kim  received  a  BS  in  Mechanical  Engineering  from  the  University  of California Riverside  in  1999,  an  MS  and  PhD  in  Mechanical  Engineering  from  the University  of  California  Santa  Barbara,  respectively  in  2003  and  2009. Her  current research  interests  focus  on  investigating  the  transition  to  turbulence  via  edge  state mechanisms  in  shear  flows  such  as  sinusoidal  shear  flow,  plane  Couette  flow,  pipe
flow,  and  plane  Poiseuille  flow. Current  topics  of  interest  include  the  role  of  linear  transient  energy  growth  in  the  transition  to  turbulence,  turbulence  control,  applying edge  of  chaos  ideas  to  large-scale  interconnected  and  biological  systems. She  is  currently  a  postdoctoral researcher  and  lecturer  at  the  University  of  California  Santa Barbara.