PhD Defense: Christian Cuba
    
                The application of feedback control theory in synthetic biology
Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, May 2017
Dr. Elisa Franco, Chairperson
Synthetic biology promise to provide solution to many challenges in energy, agriculture, and health by reprogramming cells to execute new tasks in the host organism. In order to do that, it requires (1) the understanding of the design principles that underlie complex dynamics in biology, (2) the development of computational tools that support the identification those principles and (3) the use of those principles and computational tools to guide the experimental implementation of novel biomolecular programs. The main motivation of this thesis is to describe my current progress and future plans to expand (1)-(3).
We incorporate a new design principle, known as ultrasensitivity response, to design robust  biomolecular  dynamical  system.  We  show  that  molecular  titration  in  the context  of  feedback  circuits  enhance  the  emergence  of  oscillations  and  bistable behavior  in  the  parameter  space.  We  also  propose  and  analyze  a  new  molecular network,  termed  Brink  motif,  which  exhibits  an  ultrasensitive  input-output response similar  to  a  zero-order  ultrasensitive  switch.  We  discuss  the  Brink  motif  in  the context  of  robust  feedback  circuits  as  a  suitable  mechanism  to  build  (1)  reliable circuits,  oscillatory  and  bistable  dynamical behaviors,  under  parameters uncertainty, downstream load effects and shared resources and (2) robust closed loop controllers that  overcome  the  limitation  of  unidirectional  action  controllers.  Ultrasensitivity  is achieved by combining   molecular titration and an activation/deactivation cycle and requires  fast  titration  and  switching  rates.  Additionally,  the  response  of  the  Brink motif has a precisely tunable threshold, which can be determined by an external input to the motif. We assess the robustness of feedback circuits with numerical simulations
and mathematical analysis.